MECE 3320 — Measurements & Instrumentation

Uncertainty Analysis

Dr. Isaac Choutapalli
Department of Mechanical Engineering
University of Texas — Pan American



Errors are a property of the measurement

Repeatability
Hysteresis
Linearity
Sensitivity
Zero shift etc..

Introduction

Uncertainty analysis is the process of identifying, guantitying and combining the errors.

Measurement errors can be grouped into two categories — Random & Systematic errors
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Figure 5.1. Distribution of errors upon repeated measurements.



Stages in Uncertainty Analysis

There are different stages in an uncertainty analysis:
* Design stage
* Single measurement
e Multiple measurement

. Initial analysis performed prior to measurement. This
uncertainty is based on the resolution of the instrument to be used assuming that all other
sources of error are zero. This is called

Design-stage uncertainty root-sum-squares (RSS)
—~ 5 «_—— method
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Interpolation error Instrument errors
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U =+ resolution Errors due to linearity,

(95% confidence level) accuracy, sensitivity etc..



Design Stage Uncertainty Analysis

EXAMPLE 5.2

A voltmeter is to be used to measure the output from a pressure transducer as an electrical

. . " . - e . .
signal. The nominal pressure is expected to be about 3 psi (3 Ib/in.”). Estimate the design-
stage uncertainty in this combination. The following information is available:

Voltmeter
Resolution: 10 uv
Accuracy: within 0.001% of reading
Transducer
Range: +5 psi
Sensitivity: I Vipsi
Input power: 10 VDC + 1%
Output: +5V
Linearity: within 2.5 mV/psi over range
Sensitivity: within 2 mV/psi over range
Resolution: negligible

KNOWN Instrument specifications
ASSUMPTIONS Values representative of instrument at 95% probability

FIND u, for each device and u, for the measurement system
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SOLUTION The procedure in Figure 5.2 will be used for both instruments to estimate the design-
stage uncertainty in each. The resulting uncertainties will then be combined using the
RSS approximation to estimate the system u,.
The uncertainty in the voltmeter at the design stage is given by equation (5.3) as

Design Stage Uncertainty Analysis

(ua)p = £/ (o) + (uc)
From the information available,
(uo)g = £5uV  (95%)
For a nominal pressure of 3 psi, we expect to measure an output of 3 V. Then,
(uc)p = £(3V x0.00001) = £30uV  (95% assumed)

so that the design-stage uncertainty in the voltmeter is
(ug)p = £30.4pV  (95%)



@ Design Stage Uncertainty Analysis

The uncertainty in the pressure transducer output at the design stage is also given by
equation (5.17). Assuming that we operate within the input power range specified, the
instrument output uncertainty can be estimated by considering the uncertainty in each of
the instrument elemental errors of linearity, e, and sensitivity, e;:

(u.), = /el + €3 (95% assumed)
P 1 2

. :t\[(Z.S mV/psi x 3psi)’ + (2mV/psi x 3 psi)’
=49.61mV (95%)

Since (up) 2~ 0 V/psi, then the design-stage uncertainty in the transducer in terms of
indicated voltage is (uz), = £9.61 mV (95%).

Finally, u, for the combined system is found by use of the RSS method using the
design-stage uncertainties of the two devices. The design-stage uncertainty in pressure as
indicated by this measurement system is estimated to be

Uug = :t\/(ud)f.: + (ua);

= i\ﬂo.oso mV)? + (9.61 mV)?

=49.61mV (95%)
But since the sensitivity is 1 V/psi, the uncertainty in pressure is better stated as
ug = +£0.0096psi  (95%)



Error Sources

Design Stage Uncertainty Analysis provides information and assess methodology for
instrument selection but cannot provide the sources of error that influence a measurement.

So, what are the that we need to know to carry out an uncertainty analysis?
. . Errors that enter the measurement system during calibration
. . Errors that include sensor and instrument errors, uncontrolled

variables such as changes in operating conditions, installation effects and measured variable
spatio-temporal variations.

. . Basically these are the errors due to curve-fits and correlations

Once we know the sources of error, ?
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Systematic and Random Error

If you ask the person who sells fish at your favorite market to weight a piece of fish
several times for you, and he puts his thumb on the scale in a way that makes the fish seem
2 ounces heavier than it is, that’s bias- a systematic tendency to over or underestimate the
true value. Notice that systematic error doesn’t move around from observation to

observation- that’s what makes it systematic.

They have no patterns or trends and their average is close to zero. Weigh your fish several
times using different weights, you will get different answers because of the random errors.
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Task: Estimate the filling
time of a water tank using
a hose of a given diameter

l

Need to know the
discharge rate from the
hose to estimate the
filling time

Error Propagation

Estimate
filling time

i

Measure tank
volume

i

Calculate hose
discharge rate

Measure the time required I
to fill up a bucket of Measure time s~ Measure bucket volume
known volume. Error Propagation




Error Propagation

For a displacement transducer having a calibration curve y = KE, estimate the uncertainty

in displacement y for E=5.00 V, if K= 10.10 mm/V with ux= +0.10 mm/V and
up = =0.01V at 95% confidence.

KNOWN
y = KE
E=500V wug=4001V
K=1010mm/V ug = £0.10mm/V

FIND
Uy
SOLUTION Based on equations (5.10) and (5.11), respectively,
y =f(E. ?) and wy, = f(ug, ug)

From equation (5.13), the uncertainty in the displacement at y = KE is

uy = =% [(95145)2 + (9.'("::)2] .

where the sensitivity indices are evaluated from equation (5.12) as

_ Oy Oy
eg—a'z,—-K and Bx—ﬁ—



@ Error Propagation

or we can write equation (5.13) as
. ,11/2
uy = | (Kug) + (Eux)’]

The operating point occurs at the nominal or the mean values of E = 5.00 Vand y = 50.5(
mm. With £ =5.00 Vand K = 10.10 mm/V and substituting for ug and ug, evaluate u, a
its operating point:

2 9 1/2
ty, s = %[ (0.10) +(0.5)] = +0.51mm (95%)

y=50.5




Single/Multiple Measurement
Uncertainty Analysis

Measurement uncert?inty, u,
u, = [B? + (t, 95 P)?1Z (95%)

~ ™~

Measurement Standard Random Ulncertainty Measurement Systematic Uncelrtainty
P=[PZ+P?+...+P?)2 B=[BZ+BZ+...+BA?
S For each €, assign Table 5.2 Data-Acquisition Error Source Group
P=S. =—+%+ Py, By,
\/W Element Error Source?
1 Measurement system operating conditions
2 Sensor-transducer stage (instrument error)
3 Signal conditioning stage (instrument error)
Identify elemental errors - 4 Output stage (instrument error)
in measurement, € 5 Process operating conditions
6 Sensor installation effects
7 Environmental effects
Measurement 8 Spatial variation error
9 Temporal variation error

etc.

Measured value, x

Figure 5.6. Multiple-measurement uncertainty procedure for combining uncertainties.



Single/Multiple Measurement
Uncertainty Analysis

EXAMPLE 5.8

Ten repeated measurements of force, F, are made over time under fixed operating
conditions. The data are listed below. Estimate the standard random uncertainty due to the
elemental error in the mean value of the force that is introduced into the measured data

through the data scatter.

n F[N] n FIN]
1 123.2 6 119.8
2 115.6 7 117.5
3 117.1 8 120.6
4 125.7 9 118.8
5 121.1 10 121.9

KNOWN Measured data set
N=10

ASSUMPTIONS Error due to data scatter only
FIND Estimate P, [equation (5.20)]

SOLUTION The mean value of the force based on this finite data set is computed from equation
(4.14) as F = 120.1 N. A random error is associated with the estimate of the mean value
because of data scatter. This error enters the measurement during data acquisition (Table
5.2). The standard random uncertainty in this error can be computed through the standard
deviation of the means, equation (4.16):

_ 5
VN

3.2
= = 1.0IN

V10

Py = S5




Single/Multiple Measurement
Uncertainty Analysis

EXAMPLE 5.12
After an experiment to measure stress in a loaded beam, an uncertainty analysis reveals

the following values of uncertainty in stress measurement whose magnitudes were
computed from elemental errors using equations (5.20) and (5.21).

B, = lON/cm2 82 =2.1 N/Cm2 B3 = ON/sz

P, =46N/cm* P, =103N/cm?*  P; = 1.2N/cm?
\’|=]4 V2=37 V3=8

If the mean value of the stress in the measurement is & = 223.4 N/cm?, determine the best
estimate of the stress at a 95% confidence level, assuming all errors are accounted for.

KNOWN Experimental errors
ASSUMPTIONS All elemental errors (K = 3) have been included.
FIND P, B, and u (using equations 5.20-5.23)

SOLUTION We seek values for the statement, o’ = G % us(95%), given that & = 223.4N/cm?.
The uncertainty estimate in the measurement is obtained through equations (5.20)

through (5.23). The measurement standard random uncertainty is given by equation
(5.20) as

P = (Pf+P§+P§)'/2= 11.3N/cm?



Single/Multiple Measurement
Uncertainty Analysis

o

The measurement systematic uncertainty is given by equation (5.21) as

B = (B + B2 + B2)"*=23N/cm?

The degrees of freedom in P is found from equation (5.23) to be

3 2
(37)

v = ;"— ~ 49

> Py/vi

k=1
Therefore, the ¢ estimator is 49 95 ~ 2.0. The uncertainty estimate is found using equation
(5.22) to be

. ,11/2 2\2 5\ 211/2
uo = [B2+ (nosP)’| = £[(23N/em?)"+(2 x 113N/em?)’]
= 422.7N/cm?

The best estimate is given in the form of equation (4.1) as

o' =223.4+227N/cm* (95%)



o

P A S T T AT £
Py v i u i .

The density of a gas, p, which is believed to follow the ideal gas equation of state, p = p/
RT, is to be estimated through separate measurements of pressure, p, and temperature, 7.
The gas is housed within a rigid impermeable vessel. The literature accompanying the
pressure measurement system states an instrument uncertainty to within 1% of the
reading, and that accompanying the temperature measuring system suggests 0.6°R.
Twenty measurements of pressure, N, =20, and ten measurements of temperature,
Ny =10, are made with the following statistical outcome:

= 225391 psfa S, = 167.21 psfa
560.4°R Sr =3.0°R

where psfa refers to Ib/ft* absolute. Determine a best estimate of the density. The gas
constant is R = 54.7 fi-Ib/Ib,,-°R.

Propagation of Uncertainty to a Result

p
T

KNOWN
ﬁv Sp! Ta ST B
p=p/RT: R = 54.7 ft-Ib/lb,-°R
ASSUMPTIONS Gas behaves as an ideal gas p .
P =-==0.07
FIND P RT 074 1b,, /ft

p'=ptu, (95%)
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(B|)p= 22.5 psfa (Pl )p= 0

(BI)T =0.6°R (Pl)T =0

(B),

(P),

Propagation of Uncertainty to a Result

Sp  167.21 psfa

(Pz)pz S5 = N = 750 =374psfa v,=19
(B2),=0
_ o _ S _30R__ . -

(P =S85 =5 =—p==09R v, =9

(BZ)T = 0
0 11/2
(22.5)*+(0)*| = 22.5psfa
I 1172
(0)°+(37.4)*| '~ = 37.4psfa



@ Propagation of Uncertainty to a Result

(B); = 0.6°R
(P); =0.9°R
with degrees of freedom determined from equation (5.23) to be
(v),=N,—1=19
(V)r=9

The propagation of systematic and random uncertainties through to the result, the density,
will be estimated using the RSS of equations (5.27) and (5.28):

e \? (op .\
o= |(Soer) 4 (32)

(5.31)

(12 x 107 +(1.2 x 10-3)2] .
= 0.0012 Ib, /ft?



Propagation of Uncertainty to a Result

” 57 1/2
- ap -
) +(&m) J

(8 x 10‘5)2+(7 X 10“4)2]
= 0.0007 Ib,, /ft>
The degrees of freedom in the density is determined from equation (5.30):

9 2
op > (op \?
(ERRE)
op y ap )
7)o+ (&) />

From Table 4.4, I3 95 = 2.06.
The uncertainty in the mean value of density is estimated from equation (5.29):

» 211/2
up, = [B;‘, + (123‘95Pp) ]

= 0.0025 b, /ft*  (95%)

The best estimate of the density is given in the form of equation (5.24):
p' = 0.074 £ 0.0025 Ib,, /f*  (95%)

This measurement of density has an uncertainty of about 3.4%.
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